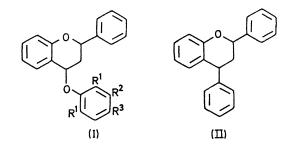
4α-Aryloxyflavans

By G. BATEMAN and B. R. BROWN* (The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY)

Summary 4α -Aryloxyflavans have been synthesised by reaction of phenols with flavan-4-ols catalysed by boron trifluoride in ether or dioxan.

THOUGH 4-alkyloxyflavans are known,¹ 4-aryloxyflavans (I) have not hitherto been prepared. Nevertheless, results² from ozonolysis³ led us to postulate such structures as the basic flavanoid units in the tannin from common heather (Calluna vulgaris).


Haslam has suggested⁴ that 4-aryloxyflavans (I) might result, along with the 4-arylflavans (II) which we had isolated, from reaction of flavan-4-ols with phenols in alcoholic hydrogen chloride.⁵ A re-examination of this reaction has shown that 4-aryloxyflavans are not present among the products and we have subsequently shown that 4-aryloxyflavans (I) react more rapidly with phenols than does flavan-4 β -ol under these conditions to yield 4-arylflavans (II).

Attempts to prepare 4-aryloxyflavans by reaction of alkaline salts of phenols with 4-halogenoflavans were not encouraging: elimination of hydrogen halide is thought to occur giving initially flav-3-enes.

Synthesis of 4a-aryloxyflavans from flavan- 4β -ol and phenols with BF₃ as catalyst at room temperature.

Pre	oduct (]	.)			
R^1	\mathbb{R}^2	Ŕ R ³	Solvent	Yield %	M.p.
н	н	н	Ether	25	$164 - 165^{\circ}$
\mathbf{H}	н	Me	Dioxan	40	8792°
Me	н	Me	Ether	70	84·5-85·5°
н	NO_2	н	Ether	30	106·5108°

The fact that phenols and alcohols are known to react in the presence of boron trifluoride to yield ethers⁶ led us, in view of the failures mentioned above, to investigate this method. The table shows our results. Along with the compounds (I; $R^1 = R^2 = R^3 = H$ and $R^1 = R^2 = H$, $R^3 = Me$) the main by-product is the corresponding 4-arylflavan; with the compounds (I; $R^1 = R^3 = Me$, $R^2 = H$ and $R^1 = R^3 = H$, $R^2 = NO_2$) the major initial by-product

is flav-3-ene. Detailed examination of the reaction between p-cresol and flavan-4 β -ol has shown that use of dioxan as solvent for short reaction times (e.g. 12 min.) is a procedure which favours maximum yield of this 4-aryloxyflavan (I; $R^1 = R^2 = H$, $R^3 = Me$).

The structures of the compounds are based upon elemental analysis, i.r., n.m.r., and mass spectra, and from the n.m.r. spectra it can be concluded that the compounds are 4α aryloxyflavans. Treatment of the compound (I; $R^1 = R^3$) = Me, $R^2 = H$) with mercaptoacetic acid yielded the known 4-mercaptoacetic acid derivative of the flavan.⁷

We thank the S.R.C. for a maintenance grant to G.B.

(Received, March 1st, 1971; Com. 165.)

¹ J. W. Clark-Lewis and L. R. Williams, Austral. J. Chem., 1967, **20**, 2151. ² M. J. Betts, B. R. Brown, P. E. Brown, and W. T. Pike, Chem. Comm., 1967, 1110.

³ Not from reaction with mercaptoacetic acid as misquoted by K. D. Sears and R. L. Casebier, Chem. Comm., 1968, 1437; Phytochemistry, 1970, 9, 1589.
E. Haslam, "Chemistry of Vegetable Tannins," Academic Press, London, 1966, pp. 79 and 80.
B. R. Brown, W. Cummings, and J. Newbould, J. Chem. Soc., 1961, 3677.

⁶ e.g. F. J. Sowa, G. F. Hennion, and J. A. Nieuwland, J. Amer. Chem. Soc., 1935, 57, 709. ⁷ M. J. Betts, B. R. Brown, and M. R. Shaw, J. Chem. Soc. (C), 1969, 1178.